Book Image

Machine Learning with PyTorch and Scikit-Learn

By : Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
5 (7)
Book Image

Machine Learning with PyTorch and Scikit-Learn

5 (7)
By: Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Overview of this book

Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (22 chapters)
20
Other Books You May Enjoy
21
Index

Supervised data compression via linear discriminant analysis

LDA can be used as a technique for feature extraction to increase computational efficiency and reduce the degree of overfitting due to the curse of dimensionality in non-regularized models. The general concept behind LDA is very similar to PCA, but whereas PCA attempts to find the orthogonal component axes of maximum variance in a dataset, the goal in LDA is to find the feature subspace that optimizes class separability. In the following sections, we will discuss the similarities between LDA and PCA in more detail and walk through the LDA approach step by step.

Principal component analysis versus linear discriminant analysis

Both PCA and LDA are linear transformation techniques that can be used to reduce the number of dimensions in a dataset; the former is an unsupervised algorithm, whereas the latter is supervised. Thus, we might think that LDA is a superior feature extraction technique for classification tasks...