Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Applied Machine Learning Explainability Techniques
  • Table Of Contents Toc
Applied Machine Learning Explainability Techniques

Applied Machine Learning Explainability Techniques

By : Aditya Bhattacharya
4.9 (27)
close
close
Applied Machine Learning Explainability Techniques

Applied Machine Learning Explainability Techniques

4.9 (27)
By: Aditya Bhattacharya

Overview of this book

Explainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases. Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users. By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.
Table of Contents (16 chapters)
close
close
1
Section 1 – Conceptual Exposure
5
Section 2 – Practical Problem Solving
12
Section 3 –Taking XAI to the Next Level

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Explainable AI (XAI) with Python

Denis Rothman

ISBN: 9781800208131

  • Plan for XAI through the different stages of the machine learning life cycle
  • Estimate the strengths and weaknesses of popular open-source XAI applications
  • Examine how to detect and handle bias issues in machine learning data
  • Review ethics considerations and tools to address common problems in machine learning data
  • Share XAI design and visualization best practices
  • Integrate explainable AI results using Python models
  • Use XAI toolkits for Python in machine learning life cycles to solve business problems

Interpretable Machine Learning with Python

Serg Masís

ISBN: 9781800203907

  • Recognize the importance of interpretability in business
  • Study models that are intrinsically interpretable such as linear models, decision trees, and...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Applied Machine Learning Explainability Techniques
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon