-
Book Overview & Buying
-
Table Of Contents
-
Feedback & Rating
Practical Guide to Applied Conformal Prediction in Python
By :
Practical Guide to Applied Conformal Prediction in Python
By:
Overview of this book
In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications.
Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification.
By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.
Table of Contents (19 chapters)
Preface
Chapter 1: Introducing Conformal Prediction
Chapter 2: Overview of Conformal Prediction
Part 2: Conformal Prediction Framework
Chapter 3: Fundamentals of Conformal Prediction
Chapter 4: Validity and Efficiency of Conformal Prediction
Chapter 5: Types of Conformal Predictors
Part 3: Applications of Conformal Prediction
Chapter 6: Conformal Prediction for Classification
Chapter 7: Conformal Prediction for Regression
Chapter 8: Conformal Prediction for Time Series and Forecasting
Chapter 9: Conformal Prediction for Computer Vision
Chapter 10: Conformal Prediction for Natural Language Processing
Part 4: Advanced Topics
Chapter 11: Handling Imbalanced Data
Chapter 12: Multi-Class Conformal Prediction
Index
Customer Reviews