Book Image

Data Exploration and Preparation with BigQuery

By : Mike Kahn
Book Image

Data Exploration and Preparation with BigQuery

By: Mike Kahn

Overview of this book

Data professionals encounter a multitude of challenges such as handling large volumes of data, dealing with data silos, and the lack of appropriate tools. Datasets often arrive in different conditions and formats, demanding considerable time from analysts, engineers, and scientists to process and uncover insights. The complexity of the data life cycle often hinders teams and organizations from extracting the desired value from their data assets. Data Exploration and Preparation with BigQuery offers a holistic solution to these challenges. The book begins with the basics of BigQuery while covering the fundamentals of data exploration and preparation. It then progresses to demonstrate how to use BigQuery for these tasks and explores the array of big data tools at your disposal within the Google Cloud ecosystem. The book doesn’t merely offer theoretical insights; it’s a hands-on companion that walks you through properly structuring your tables for query efficiency and ensures adherence to data preparation best practices. You’ll also learn when to use Dataflow, BigQuery, and Dataprep for ETL and ELT workflows. The book will skillfully guide you through various case studies, demonstrating how BigQuery can be used to solve real-world data problems. By the end of this book, you’ll have mastered the use of SQL to explore and prepare datasets in BigQuery, unlocking deeper insights from data.
Table of Contents (21 chapters)
Free Chapter
1
Part 1: Introduction to BigQuery
4
Part 2: Data Exploration with BigQuery
10
Part 3: Data Preparation with BigQuery
14
Part 4: Hands-On and Conclusion

Summary

In this chapter, we outlined the different approaches and considerations for getting started with data preparation. We went over the various tools that can support you in your data preparation process. By understanding the available options for data preparation, you are now more equipped to process and interpret large, complex, raw data. As you have seen, the options for data preparation range from visual web-based to code-based variants to fit all analyst skill and experience levels.

In the next chapter, we will go in depth into data preparation using SQL and visual tools to ready you with repeatable approaches for cleansing and preparing your data.