Book Image

Distributed Data Systems with Azure Databricks

By : Alan Bernardo Palacio
Book Image

Distributed Data Systems with Azure Databricks

By: Alan Bernardo Palacio

Overview of this book

Microsoft Azure Databricks helps you to harness the power of distributed computing and apply it to create robust data pipelines, along with training and deploying machine learning and deep learning models. Databricks' advanced features enable developers to process, transform, and explore data. Distributed Data Systems with Azure Databricks will help you to put your knowledge of Databricks to work to create big data pipelines. The book provides a hands-on approach to implementing Azure Databricks and its associated methodologies that will make you productive in no time. Complete with detailed explanations of essential concepts, practical examples, and self-assessment questions, you’ll begin with a quick introduction to Databricks core functionalities, before performing distributed model training and inference using TensorFlow and Spark MLlib. As you advance, you’ll explore MLflow Model Serving on Azure Databricks and implement distributed training pipelines using HorovodRunner in Databricks. Finally, you’ll discover how to transform, use, and obtain insights from massive amounts of data to train predictive models and create entire fully working data pipelines. By the end of this MS Azure book, you’ll have gained a solid understanding of how to work with Databricks to create and manage an entire big data pipeline.
Table of Contents (17 chapters)
1
Section 1: Introducing Databricks
4
Section 2: Data Pipelines with Databricks
9
Section 3: Machine and Deep Learning with Databricks

Summary

In this section, we have covered many examples related to how we can extract and improve features that we have available in the data, using methods such as tokenization, polynomial expansion, and one-hot encoding, among others. These methods allow us to prepare our variables for the training of our models and are considered as a part of feature engineering.

Next, we dived into how we can extract features from text using TF-IDF and Word2Vec and how we can handle missing data in Azure Databricks using the PySpark API. Finally, we have finished with an example of how we can train a deep learning model and have it ready for serving and get predictions when posting REST API requests.

In the next chapter, we will focus more on handling large amounts of data for deep learning using TFRecords and Petastorm, as well as on how we can leverage existing models to extract features from new data in Azure Databricks.