-
Book Overview & Buying
-
Table Of Contents
Distributed Data Systems with Azure Databricks
By :
To work with the huge amount of information available to modern consumers, Apache Spark was created. It is a distributed, cluster-based computing system and a highly popular framework used for big data, with capabilities that provide speed and ease of use, and includes APIs that support the following use cases:
It can run very quickly on large datasets thanks to its in-memory processing design that allows it to run with very few read/write disk operations. It has a SQL-like interface and its object-oriented design makes it very easy to understand and write code for; it also has a large support community.
Despite its numerous benefits, Apache Spark has its limitations. These limitations include the following:
Let's look at the solution to these issues: Azure Databricks.