Book Image

Distributed Data Systems with Azure Databricks

By : Alan Bernardo Palacio
Book Image

Distributed Data Systems with Azure Databricks

By: Alan Bernardo Palacio

Overview of this book

Microsoft Azure Databricks helps you to harness the power of distributed computing and apply it to create robust data pipelines, along with training and deploying machine learning and deep learning models. Databricks' advanced features enable developers to process, transform, and explore data. Distributed Data Systems with Azure Databricks will help you to put your knowledge of Databricks to work to create big data pipelines. The book provides a hands-on approach to implementing Azure Databricks and its associated methodologies that will make you productive in no time. Complete with detailed explanations of essential concepts, practical examples, and self-assessment questions, you’ll begin with a quick introduction to Databricks core functionalities, before performing distributed model training and inference using TensorFlow and Spark MLlib. As you advance, you’ll explore MLflow Model Serving on Azure Databricks and implement distributed training pipelines using HorovodRunner in Databricks. Finally, you’ll discover how to transform, use, and obtain insights from massive amounts of data to train predictive models and create entire fully working data pipelines. By the end of this MS Azure book, you’ll have gained a solid understanding of how to work with Databricks to create and manage an entire big data pipeline.
Table of Contents (17 chapters)
1
Section 1: Introducing Databricks
4
Section 2: Data Pipelines with Databricks
9
Section 3: Machine and Deep Learning with Databricks

Summary

Throughout this chapter, we have reviewed different features of Structured Streaming and looked at how we can leverage them in Azure Databricks when dealing with streams of data from different sources.

These sources can be data from Azure Event Hubs or data derived using Delta tables as streaming sources, using Auto Loader to manage file detection, reading from Apache Kafka, using Avro format files, and through dealing with data sinks. We have also described how Structured Streaming provides fault tolerance while working with streams of data and looked at how we can visualize these streams using the display function. Finally, we have concluded with an example in which we have simulated JSON files arriving in the storage.

In the next chapter, we will dive more deeply into how we can use the PySpark API to manipulate data, how we can use Python popular libraries in Azure Databricks and the nuances of installing them on a distributed system, how we can easily migrate from...