Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By : David Wolff
Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By: David Wolff

Overview of this book

OpenGL 4 Shading Language Cookbook, Third Edition provides easy-to-follow recipes that first walk you through the theory and background behind each technique, and then proceed to showcase and explain the GLSL and OpenGL code needed to implement them. The book begins by familiarizing you with beginner-level topics such as compiling and linking shader programs, saving and loading shader binaries (including SPIR-V), and using an OpenGL function loader library. We then proceed to cover basic lighting and shading effects. After that, you'll learn to use textures, produce shadows, and use geometry and tessellation shaders. Topics such as particle systems, screen-space ambient occlusion, deferred rendering, depth-based tessellation, and physically based rendering will help you tackle advanced topics. OpenGL 4 Shading Language Cookbook, Third Edition also covers advanced topics such as shadow techniques (including the two of the most common techniques: shadow maps and shadow volumes). You will learn how to use noise in shaders and how to use compute shaders. The book provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer-graphics applications.
Table of Contents (17 chapters)
Title Page
Packt Upsell
Contributors
Preface
Index

Implementing order-independent transparency


Transparency can be a difficult effect to do accurately in pipeline architectures like OpenGL. The general technique is to draw opaque objects first, with the depth buffer enabled, then to make the depth buffer read-only (using glDepthMask), disable the depth test, and draw the transparent geometry. However, care must be taken to ensure that the transparent geometry is drawn from back to front. That is, objects farther from the viewer should be drawn before the objects that are closer. This requires some sort of depth-sorting to take place prior to rendering.

The following images show an example of a block of small, semi-transparent spheres with some semi-transparent cubes placed evenly within them. On the right-hand side, the objects are rendered in an arbitrary order, using standard OpenGL blending. The result looks incorrect because objects are blended in an improper order. The cubes, which were drawn last, appear to be on top of the spheres...