Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By : David Wolff
Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By: David Wolff

Overview of this book

OpenGL 4 Shading Language Cookbook, Third Edition provides easy-to-follow recipes that first walk you through the theory and background behind each technique, and then proceed to showcase and explain the GLSL and OpenGL code needed to implement them. The book begins by familiarizing you with beginner-level topics such as compiling and linking shader programs, saving and loading shader binaries (including SPIR-V), and using an OpenGL function loader library. We then proceed to cover basic lighting and shading effects. After that, you'll learn to use textures, produce shadows, and use geometry and tessellation shaders. Topics such as particle systems, screen-space ambient occlusion, deferred rendering, depth-based tessellation, and physically based rendering will help you tackle advanced topics. OpenGL 4 Shading Language Cookbook, Third Edition also covers advanced topics such as shadow techniques (including the two of the most common techniques: shadow maps and shadow volumes). You will learn how to use noise in shaders and how to use compute shaders. The book provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer-graphics applications.
Table of Contents (17 chapters)
Title Page
Packt Upsell
Contributors
Preface
Index

Introduction


In this chapter, we will focus on techniques that work directly with the pixels in a framebuffer. These techniques typically involve multiple passes. An initial pass produces the pixel data and subsequent passes apply effects or further processes those pixels. To implement this, we often make use of the ability provided in OpenGL for rendering directly to a texture or set of textures (refer to the Rendering to a texture recipe in Chapter 5, Using Textures).

 

 

The ability to render to a texture, combined with the power of the fragment shader, opens up a huge range of possibilities. We can implement image processing techniques such as brightness, contrast, saturation, and sharpness by applying an additional process in the fragment shader prior to output. We can apply convolution filters such as edge detection, smoothing (blur), or sharpening. We'll take a closer look at convolution filters in the recipe on edge detection.

A related set of techniques involves rendering additional...