Book Image

Learn Robotics Programming - Second Edition

By : Danny Staple
Book Image

Learn Robotics Programming - Second Edition

By: Danny Staple

Overview of this book

We live in an age where the most complex or repetitive tasks are automated. Smart robots have the potential to revolutionize how we perform all kinds of tasks with high accuracy and efficiency. With this second edition of Learn Robotics Programming, you'll see how a combination of the Raspberry Pi and Python can be a great starting point for robot programming. The book starts by introducing you to the basic structure of a robot and shows you how to design, build, and program it. As you make your way through the book, you'll add different outputs and sensors, learn robot building skills, and write code to add autonomous behavior using sensors and a camera. You'll also be able to upgrade your robot with Wi-Fi connectivity to control it using a smartphone. Finally, you'll understand how you can apply the skills that you've learned to visualize, lay out, build, and code your future robot building projects. By the end of this book, you'll have built an interesting robot that can perform basic artificial intelligence operations and be well versed in programming robots and creating complex robotics projects using what you've learned.
Table of Contents (25 chapters)
1
Section 1: The Basics – Preparing for Robotics
7
Section 2: Building an Autonomous Robot – Connecting Sensors and Motors to a Raspberry Pi
15
Section 3: Hearing and Seeing – Giving a Robot Intelligent Sensors
21
Section 4: Taking Robotics Further

Driving a specific distance

For driving a specific distance, we use the PI controller again and incorporate the distance measurements into our encoder object. We calculate how many ticks we want the left wheel to have turned for a given distance, and then use this instead of a timeout component.

Refactoring unit conversions into the EncoderCounter class

We want the conversions for our encoders in the EncoderCounter class to use them in these behaviors. Refactoring is the process of moving code or improving code while retaining its functionality. In this case, converting distances is one of the purposes of using encoders, so it makes sense to move this code in there:

  1. Open up your encoder_counter.py class. First, we need the math import:
    from gpiozero import DigitalInputDevice
    import math
    ...
  2. At the top of the class, add ticks_to_mm_const as a class variable (not an instance variable) to use it without any instances of the class. Set this to none initially so that we...