Book Image

Learning Python Design Patterns - Second Edition - Second Edition

By : Chetan Giridhar, Gennadiy Zlobin
Book Image

Learning Python Design Patterns - Second Edition - Second Edition

By: Chetan Giridhar, Gennadiy Zlobin

Overview of this book

With the increasing focus on optimized software architecture and design it is important that software architects think about optimizations in object creation, code structure, and interaction between objects at the architecture or design level. This makes sure that the cost of software maintenance is low and code can be easily reused or is adaptable to change. The key to this is reusability and low maintenance in design patterns. Building on the success of the previous edition, Learning Python Design Patterns, Second Edition will help you implement real-world scenarios with Python’s latest release, Python v3.5. We start by introducing design patterns from the Python perspective. As you progress through the book, you will learn about Singleton patterns, Factory patterns, and Façade patterns in detail. After this, we’ll look at how to control object access with proxy patterns. It also covers observer patterns, command patterns, and compound patterns. By the end of the book, you will have enhanced your professional abilities in software architecture, design, and development.
Table of Contents (19 chapters)
Learning Python Design Patterns Second Edition
Credits
Foreword
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Frequently asked questions


Q1. Should a low-level component be disallowed from calling a method in a higher-level component?

A: No, a low-level component would definitely call the higher-level component through inheritance. However, what the programmer needs to make sure is that there is no circular dependency where the low-level and high-level components are dependent on each other.

Q2. Isn't the strategy pattern similar to the Template pattern?

A: The strategy pattern and Template pattern both encapsulate algorithms. Template depends on inheritance while strategy uses composition. The Template Method pattern is a compile-time algorithm selection by sub-classing while the strategy pattern is a runtime selection.