Book Image

Hands-On Data Structures and Algorithms with Rust

By : Claus Matzinger
Book Image

Hands-On Data Structures and Algorithms with Rust

By: Claus Matzinger

Overview of this book

Rust has come a long way and is now utilized in several contexts. Its key strengths are its software infrastructure and resource-constrained applications, including desktop applications, servers, and performance-critical applications, not forgetting its importance in systems' programming. This book will be your guide as it takes you through implementing classic data structures and algorithms in Rust, helping you to get up and running as a confident Rust programmer. The book begins with an introduction to Rust data structures and algorithms, while also covering essential language constructs. You will learn how to store data using linked lists, arrays, stacks, and queues. You will also learn how to implement sorting and searching algorithms. You will learn how to attain high performance by implementing algorithms to string data types and implement hash structures in algorithm design. The book will examine algorithm analysis, including Brute Force algorithms, Greedy algorithms, Divide and Conquer algorithms, Dynamic Programming, and Backtracking. By the end of the book, you will have learned how to build components that are easy to understand, debug, and use in different applications.
Table of Contents (15 chapters)

Robust Trees

Lists are great for storing a bunch of items, but what about looking up specific elements? In the previous chapter, a skip list greatly outperformed a regular linked list when simply finding an item. Why? Because it was utilizing an iteration strategy that resembles that of a balanced tree structure: there, the internal order lets the algorithm strategically skip items. However, that's only the beginning. Many libraries, databases, and search engines are built on trees; in fact, whenever a program is compiled, the compiler creates an abstract syntax tree.

Tree-based data structures incorporate all kinds of smart ideas that we will explore in this chapter, so you can look forward to the following:

  • Implementing and understanding a binary search tree
  • Learning about self-balancing trees
  • How prefix or suffix trees work
  • What a priority queue uses internally
  • Graphs...