Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Julia
  • Table Of Contents Toc
Mastering Julia

Mastering Julia - Second Edition

By : Malcolm Sherrington
4.3 (3)
close
close
Mastering Julia

Mastering Julia

4.3 (3)
By: Malcolm Sherrington

Overview of this book

Julia is a well-constructed programming language which was designed for fast execution speed by using just-in-time LLVM compilation techniques, thus eliminating the classic problem of performing analysis in one language and translating it for performance in a second. This book is a primer on Julia’s approach to a wide variety of topics such as scientific computing, statistics, machine learning, simulation, graphics, and distributed computing. Starting off with a refresher on installing and running Julia on different platforms, you’ll quickly get to grips with the core concepts and delve into a discussion on how to use Julia with various code editors and interactive development environments (IDEs). As you progress, you’ll see how data works through simple statistics and analytics and discover Julia's speed, its real strength, which makes it particularly useful in highly intensive computing tasks. You’ll also and observe how Julia can cooperate with external processes to enhance graphics and data visualization. Finally, you will explore metaprogramming and learn how it adds great power to the language and establish networking and distributed computing with Julia. By the end of this book, you’ll be confident in using Julia as part of your existing skill set.
Table of Contents (14 chapters)
close
close

Arrays

An array is an indexable collection of (normally) heterogeneous values such as integers, floats, and Booleans. In Julia, unlike many programming languages, the index starts at 1, not 0.

One-dimensional arrays are also termed vectors and two-dimensional arrays as matrices.

Let’s define the following vector:

julia> A = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 
610];
julia> typeof(A)
Vector{Int64} (alias for Array{Int64, 1})

This represents a column array, whereas not using the comma as an element separator creates a row matrix:

julia> A = [1 1 2 3 5 8 13 21 34 55 89 144 233 377 610];
julia> typeof(A)
Matrix{Int64} (alias for Array{Int64, 2})

We observed these are the first 15 numbers of the well-known Fibonacci sequence.

In conjunction with loops in the Asian option example in the previous chapter, we meet the definition of a range as start:[step]:end:

julia> A = 1:10; typeof(A)
UnitRange{Int64}
julia> B = 1:3:15; typeof(B)
StepRange{Int64,Int64}
julia> C = 0.0:0.2:1.0; typeof(C)
StepRangeLen{Float64,Base.TwicePrecision{Float64},
                     Base.TwicePrecision{Float64}, Int64}

In Julia, the preceding definition returns a range type.

To convert a range to an array, we have seen previously that it is possible to use the collect() function, as follows:

julia> C = 0.0:0.2:1.0; collect(C)
6-element Vector{Float64}:
0.0
0.2
0.4
0.6
0.8
1.0

Julia also provides functions such as zeros(), ones(), and rand(), which provide array results.

Normally, these functions return floating-point values, so a little bit of TLC is needed to provide integer results, as seen in the following code snippet:

A = convert.(Int64,zeros(15));
B = convert.(Int64,ones(15));
C = convert.(Int64,rand(1:100,15));

The preceding code is an example of broadcasting in Julia, and we will discuss it a little further in the next section.

Broadcasting and list comprehensions

Originally, the application of operators to members of an array was implemented using a broadcast() function. This led to some pretty unwieldy expressions, so this was simplified by the preceding “dot” notation.

Let’s define a 2x3 matrix of rational numbers and convert them to floats, outputting the result to 4 significant places:

julia> X = convert.(Float64, [11/17 2//9 3//7; 4//13 5//11 6//23])
2×3 Matrix{Float64}:
 0.647059  0.222222  0.428571
 0.307692  0.454545  0.26087
julia> round.(X, digits=4)
2×3 Matrix{Float64}:
 0.6471  0.2222  0.4286
 0.3077  0.4545  0.2609

Note that the second statement does not alter the actual precision of the values in X unless we reassign—that is, X = round,(X, digits=4).

Consider the function we plotted in Chapter 1 to demonstrate the use of the UnicodePlots package:

julia> f(x) = x*sin(3.0x)*exp(-0.03x)

This does not work when applied to the matrix, as we can see here:

julia> Y = f(X)
ERROR: Dimension Mismatch: matrix is not square: dimensions are (2, 3)

But it can be evaluated by broadcasting; in this case, the broadcasting dot follows the function names, and also note that broadcasting can be applied to a function defined by ourselves, not just to built-in functions and operators:

julia> Y = f.(X)
2×3 Matrix{Float64}:
 0.591586  0.136502  0.40602
 0.243118  0.438802  0.182513

This can also be done without the f() temporary function:

julia> Y = X .* sin.(3.0 .* X) .* exp.(- 0.03 .* X)
2×3 Matrix{Float64}:
 0.591586  0.136502  0.40602
 0.243118  0.438802  0.182513

Finally, in the following example, we are using the |> operator we met previously and an anonymous function:

julia> X |> (x -> x .* sin.(3.0 .* x) .* exp.(- 0.03 .* x))
2×3 Matrix{Float64}:
 0.591586  0.136502  0.40602
 0.243118  0.438802  0.182513

This introduces the alternate style (x -> f(x)) as a mapping function, equivalent to the syntax to map (f,X).

Another method of creating and populating an array is by using a list comprehension:

# Using a list comprehension is a bit more cumbersome
julia> Y = zeros(2,3);
julia> [Y[i,j] =
        X[i,j]*sin(3.0*X[i,j])*exp(-0.03*X[i,j]) for i=1:2 for j=1:3];
julia> Y
2×3 Matrix{Float64}:
 0.591586  0.136502  0.40602
 0.243118  0.438802  0.182513

There are cases where a list comprehension is useful—for example, to list only odd values of the Fibonacci series, we can use the following statement:

julia> [fac(k) for k in 1:9 if k%2 != 0]
5-element Vector{BigInt}:
      1
      6
    120
   5040
 362880

For the moment, armed with the use of arrays, we will look at recursion and how this is implemented in Julia.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Julia
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon