Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Stacks and Queues
Hashing and Symbol Tables

Case study

One of the fields in which Python is the most popular these days is data science. In honor of that fact, let's implement a basic machine learning algorithm.

Machine learning is a huge topic, but the general idea is to make predictions or classifications about future data by using knowledge gained from past data. Uses of such algorithms abound, and data scientists are finding new ways to apply machine learning every day. Some important machine learning applications include computer vision (such as image classification or facial recognition), product recommendation, identifying spam, and self-driving cars.

So as not to digress into an entire book on machine learning, we'll look at a simpler problem: given an RGB color definition, what name would humans identify that color as?

There are more than 16 million colors in the standard RGB color space, and humans have come up with names for only a fraction of them. While there are thousands of names (some quite ridiculous; just go to any...