Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
8
Stacks and Queues
10
Hashing and Symbol Tables
Index

Chapter 6. Principles of Algorithm Design

Why do we want to study algorithm design? There are of course many reasons, and our motivation for learning something is very much dependent on our own circumstances. There are without doubt important professional reasons for being interested in algorithm design. Algorithms are the foundations of all computing. We think of a computer as being a piece of hardware, a hard drive, memory chips, processors, and so on. However, the essential component, the thing that, if missing, would render modern technology impossible, is algorithms.

The theoretical foundation of algorithms, in the form of the Turing machine, was established several decades before digital logic circuits could actually implement such a machine. The Turing machine is essentially a mathematical model that, using a predefined set of rules, translates a set of inputs into a set of outputs. The first implementations of Turing machines were mechanical and the next generation may likely see...