Book Image

Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

By : Hassi Norlen
5 (1)
Book Image

Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

5 (1)
By: Hassi Norlen

Overview of this book

IBM Quantum Experience® is a leading platform for programming quantum computers and implementing quantum solutions directly on the cloud. This book will help you get up to speed with programming quantum computers and provide solutions to the most common problems and challenges. You’ll start with a high-level overview of IBM Quantum Experience® and Qiskit®, where you will perform the installation while writing some basic quantum programs. This introduction puts less emphasis on the theoretical framework and more emphasis on recent developments such as Shor’s algorithm and Grover’s algorithm. Next, you’ll delve into Qiskit®, a quantum information science toolkit, and its constituent packages such as Terra, Aer, Ignis, and Aqua. You’ll cover these packages in detail, exploring their benefits and use cases. Later, you’ll discover various quantum gates that Qiskit® offers and even deconstruct a quantum program with their help, before going on to compare Noisy Intermediate-Scale Quantum (NISQ) and Universal Fault-Tolerant quantum computing using simulators and actual hardware. Finally, you’ll explore quantum algorithms and understand how they differ from classical algorithms, along with learning how to use pre-packaged algorithms in Qiskit® Aqua. By the end of this quantum computing book, you’ll be able to build and execute your own quantum programs using IBM Quantum Experience® and Qiskit® with Python.
Table of Contents (12 chapters)

Locating the available backends

In Qiskit®, a backend represents the system on which you run your quantum program. A backend can be a simulator, like the local Aer simulator that we have used earlier. If you want to run your quantum programs on real quantum computers instead of on your local simulator, you must identify an IBM Quantum® machine as a backend to use, and then configure your quantum program to use it.

Let's see the steps of what we'll be doing:

  1. Start by importing the required classes and methods and load your account information. In this case, we use the IBMQ class, which contains the main hardware-related functions.
  2. Take a look at the machines that are available to your account.
  3. Select a generally available backend.
  4. Create and run a Bell state quantum program on the selected backend.
  5. Select a simulator backend and run the Bell state quantum program again for comparison.

Getting ready

In this recipe, we will use...