Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learn Quantum Computing with Python and IBM Quantum Experience
  • Table Of Contents Toc
Learn Quantum Computing with Python and IBM Quantum Experience

Learn Quantum Computing with Python and IBM Quantum Experience

By : Robert Loredo
4.5 (19)
close
close
Learn Quantum Computing with Python and IBM Quantum Experience

Learn Quantum Computing with Python and IBM Quantum Experience

4.5 (19)
By: Robert Loredo

Overview of this book

IBM Quantum Experience is a platform that enables developers to learn the basics of quantum computing by allowing them to run experiments on a quantum computing simulator and a real quantum computer. This book will explain the basic principles of quantum mechanics, the principles involved in quantum computing, and the implementation of quantum algorithms and experiments on IBM's quantum processors. You will start working with simple programs that illustrate quantum computing principles and slowly work your way up to more complex programs and algorithms that leverage quantum computing. As you build on your knowledge, you’ll understand the functionality of IBM Quantum Experience and the various resources it offers. Furthermore, you’ll not only learn the differences between the various quantum computers but also the various simulators available. Later, you’ll explore the basics of quantum computing, quantum volume, and a few basic algorithms, all while optimally using the resources available on IBM Quantum Experience. By the end of this book, you'll learn how to build quantum programs on your own and have gained practical quantum computing skills that you can apply to your business.
Table of Contents (21 chapters)
close
close
1
Section 1: Tour of the IBM Quantum Experience (QX)
5
Section 2: Basics of Quantum Computing
9
Section 3: Algorithms, Noise, and Other Strange Things in Quantum World
18
Assessments
1
Appendix A: Resources

Building your own noise model

There may be times where you wish to build your own custom noise models. Whether it's to generate specific errors to test your error-mitigation methods or to create something resembling a specific device, having the ability to customize your own noise model is a handy feature to have available.

In the following steps, we will create single- and multi-qubit errors, along with readout errors. The single-qubit error will have an amplitude dampening error, the multi-qubit error will have a depolarizing error, and the readout error will be applied to one of the two qubits in the circuit:

  1. We'll begin by defining the single- and multi-qubit probability error values, followed by initializing and setting the depolarizing errors. First to the single qubit, and then to the multi-qubit error:
    # Import the error classes and methods
    from qiskit.providers.aer.noise import depolarizing_error
    from qiskit.providers.aer.noise import ReadoutError
    # Single...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learn Quantum Computing with Python and IBM Quantum Experience
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon