Book Image

C++ Game Animation Programming - Second Edition

By : Michael Dunsky, Gabor Szauer
4.5 (2)
Book Image

C++ Game Animation Programming - Second Edition

4.5 (2)
By: Michael Dunsky, Gabor Szauer

Overview of this book

If you‘re fascinated by the complexities of animating video game characters and are curious about the transformation of model files into 3D avatars and NPCs that can explore virtual worlds, then this book is for you. In this new edition, you’ll learn everything you need to know about game animation, from a simple graphical window to a large crowd of smoothly animated characters. First, you’ll learn how to use modern high-performance graphics, dig into the details of how virtual characters are stored, and load the models and animations into a minimalistic game-like application. Then, you’ll get an overview of the components of an animation system, how to play the animations and combine them, and how to blend from one animation into another. You’ll also get an introduction to topics that will make your programming life easier, such as debugging your code or stripping down the graphical output. By the end of this book, you’ll have gained deep insights into all the parts of game animation programming and how they work together, revealing the magic that brings life to the virtual worlds on your screen.
Table of Contents (22 chapters)
1
Part 1:Building a Graphics Renderer
7
Part 2: Mathematics Roundup
10
Part 3: Working with Models and Animations
15
Part 4: Advancing Your Code to the Next Level

Practical sessions

You may try out the following exercises to get a deeper insight into rendering multiple instances of glTF models:

  • Enable the dynamic addition of new instances. While the addition of a new instance to the std::vector array is easy, the buffer sizes require more attention. You need to check for a sufficient size and re-create or adjust the GPU buffers.
  • Add more than one model per instance on the screen when using GPU-instanced rendering. You could calculate the joint matrices and dual quaternions normally but add multiple GltfInstance models with the same buffer data while altering the world position and rotation values. This addition would create a much larger crowd with the same amount of CPU load. Think of thousands or tens of thousands of models jumping on the screen. Due to the spacing between the models sharing the animation clip and animation replay speed, the crowd will still look random.
  • Medium difficulty: Add both the non-instanced and instanced...