Book Image

Learning Predictive Analytics with R

By : Eric Mayor
Book Image

Learning Predictive Analytics with R

By: Eric Mayor

Overview of this book

This book is packed with easy-to-follow guidelines that explain the workings of the many key data mining tools of R, which are used to discover knowledge from your data. You will learn how to perform key predictive analytics tasks using R, such as train and test predictive models for classification and regression tasks, score new data sets and so on. All chapters will guide you in acquiring the skills in a practical way. Most chapters also include a theoretical introduction that will sharpen your understanding of the subject matter and invite you to go further. The book familiarizes you with the most common data mining tools of R, such as k-means, hierarchical regression, linear regression, association rules, principal component analysis, multilevel modeling, k-NN, Naïve Bayes, decision trees, and text mining. It also provides a description of visualization techniques using the basic visualization tools of R as well as lattice for visualizing patterns in data organized in groups. This book is invaluable for anyone fascinated by the data mining opportunities offered by GNU R and its packages.
Table of Contents (23 chapters)
Learning Predictive Analytics with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Exercises and Solutions
Index

Chapter 6. Dimensionality Reduction with Principal Component Analysis

Nowadays, accessing data is easier and cheaper than ever before. This has led to the proliferation of data in organizations' data warehouses and on the Internet. Analyzing this data is not a trivial task, as its quantity often makes analysis difficult or unpractical. For instance, the data is often more abundant than available memory on the machines. The available computational power is also often not enough to analyze the data in a reasonable time frame. One solution is to have recourse to technologies that deal with high dimensionality in data (Big Data). These solutions typically use the memory and computing power of several machines for analysis (computer clusters). But most organizations do not have such an infrastructure. Therefore, a more practical solution is to reduce the dimensionality of the data while keeping the essential information intact.

Another reason to reduce dimensionality is that, in some cases, there...