Book Image

The Unsupervised Learning Workshop

By : Aaron Jones, Christopher Kruger, Benjamin Johnston
Book Image

The Unsupervised Learning Workshop

By: Aaron Jones, Christopher Kruger, Benjamin Johnston

Overview of this book

Do you find it difficult to understand how popular companies like WhatsApp and Amazon find valuable insights from large amounts of unorganized data? The Unsupervised Learning Workshop will give you the confidence to deal with cluttered and unlabeled datasets, using unsupervised algorithms in an easy and interactive manner. The book starts by introducing the most popular clustering algorithms of unsupervised learning. You'll find out how hierarchical clustering differs from k-means, along with understanding how to apply DBSCAN to highly complex and noisy data. Moving ahead, you'll use autoencoders for efficient data encoding. As you progress, you’ll use t-SNE models to extract high-dimensional information into a lower dimension for better visualization, in addition to working with topic modeling for implementing natural language processing (NLP). In later chapters, you’ll find key relationships between customers and businesses using Market Basket Analysis, before going on to use Hotspot Analysis for estimating the population density of an area. By the end of this book, you’ll be equipped with the skills you need to apply unsupervised algorithms on cluttered datasets to find useful patterns and insights.
Table of Contents (11 chapters)
Preface

Summary

In this chapter, we have explored what clustering is and why it is important in a variety of data challenges. Building upon this foundation of clustering knowledge, you implemented k-means, which is one of the simplest, yet most popular, methods of unsupervised learning. If you have reached this summary and can repeat what k-means does step by step to a friend, then you're ready to move on to more complex forms of clustering.

From here, we will be moving on to hierarchical clustering, which, in one configuration, reuses the centroid learning approach that we used in k-means. We will build upon this approach by outlining additional clustering methodologies and approaches in the next chapter.