Book Image

Advanced Natural Language Processing with TensorFlow 2

By : Ashish Bansal, Tony Mullen
Book Image

Advanced Natural Language Processing with TensorFlow 2

By: Ashish Bansal, Tony Mullen

Overview of this book

Recently, there have been tremendous advances in NLP, and we are now moving from research labs into practical applications. This book comes with a perfect blend of both the theoretical and practical aspects of trending and complex NLP techniques. The book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It helps you apply the concepts of pre-processing text using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. You will build Named Entity Recognition (NER) from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs. The book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbots. You will learn how to apply transfer learning and fine-tuning using TensorFlow 2. Further, it covers practical techniques that can simplify the labelling of textual data. The book also has a working code that is adaptable to your use cases for each tech piece. By the end of the book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems.
Table of Contents (13 chapters)
Other Books You May Enjoy

Generating Text with RNNs and GPT-2

When your mobile phone completes a word as you type a message or when Gmail suggests a short reply or completes a sentence as you reply to an email, a text generation model is working in the background. The Transformer architecture forms the basis of state-of-the-art text generation models. BERT, as explained in the previous chapter, uses only the encoder part of the Transformer architecture.

However, BERT, being bi-directional, is not suitable for the generation of text. A left-to-right (or right-to-left, depending on the language) language model built on the decoder part of the Transformer architecture is the foundation of text generation models today.

Text can be generated a character at a time or with words and sentences together. Both of these approaches are shown in this chapter. Specifically, we will cover the following topics:

  • Generating text with:
    • Character-based RNNs for generating news headlines...