Book Image

The Supervised Learning Workshop - Second Edition

By : Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur
Book Image

The Supervised Learning Workshop - Second Edition

By: Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur

Overview of this book

Would you like to understand how and why machine learning techniques and data analytics are spearheading enterprises globally? From analyzing bioinformatics to predicting climate change, machine learning plays an increasingly pivotal role in our society. Although the real-world applications may seem complex, this book simplifies supervised learning for beginners with a step-by-step interactive approach. Working with real-time datasets, you’ll learn how supervised learning, when used with Python, can produce efficient predictive models. Starting with the fundamentals of supervised learning, you’ll quickly move to understand how to automate manual tasks and the process of assessing date using Jupyter and Python libraries like pandas. Next, you’ll use data exploration and visualization techniques to develop powerful supervised learning models, before understanding how to distinguish variables and represent their relationships using scatter plots, heatmaps, and box plots. After using regression and classification models on real-time datasets to predict future outcomes, you’ll grasp advanced ensemble techniques such as boosting and random forests. Finally, you’ll learn the importance of model evaluation in supervised learning and study metrics to evaluate regression and classification tasks. By the end of this book, you’ll have the skills you need to work on your real-life supervised learning Python projects.
Table of Contents (9 chapters)

Classification Using Decision Trees

Another powerful classification method that we will be examining in this chapter is decision trees, which have found particular use in applications such as natural language processing, for example. There are a number of different machine learning algorithms that fall within the overall umbrella of decision trees, such as Iterative Dichotomiser 3 (ID3) and Classification and Regression Tree (CART). In this chapter, we will investigate the use of the ID3 method in classifying categorical data, and we will use the scikit-learn CART implementation as another method of classifying the dataset. So, what exactly are decision trees?

As the name suggests, decision trees are a learning algorithm that apply a sequential series of decisions based on input information to make the final classification. Recalling your childhood biology class, you may have used a process similar to decision trees in the classification of different types of animals via dichotomous...