Book Image

The Supervised Learning Workshop - Second Edition

By : Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur
Book Image

The Supervised Learning Workshop - Second Edition

By: Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur

Overview of this book

Would you like to understand how and why machine learning techniques and data analytics are spearheading enterprises globally? From analyzing bioinformatics to predicting climate change, machine learning plays an increasingly pivotal role in our society. Although the real-world applications may seem complex, this book simplifies supervised learning for beginners with a step-by-step interactive approach. Working with real-time datasets, you’ll learn how supervised learning, when used with Python, can produce efficient predictive models. Starting with the fundamentals of supervised learning, you’ll quickly move to understand how to automate manual tasks and the process of assessing date using Jupyter and Python libraries like pandas. Next, you’ll use data exploration and visualization techniques to develop powerful supervised learning models, before understanding how to distinguish variables and represent their relationships using scatter plots, heatmaps, and box plots. After using regression and classification models on real-time datasets to predict future outcomes, you’ll grasp advanced ensemble techniques such as boosting and random forests. Finally, you’ll learn the importance of model evaluation in supervised learning and study metrics to evaluate regression and classification tasks. By the end of this book, you’ll have the skills you need to work on your real-life supervised learning Python projects.
Table of Contents (9 chapters)

Introduction

In the previous chapters, we discussed the two types of supervised learning problems, regression and classification, followed by ensemble models, which are built from a combination of base models. We built several models and discussed how and why they work. However, that is not enough to take a model to production. Model development is an iterative process, and the model training step is followed by validation and updating steps, as shown in the following figure:

Figure 7.1: Machine learning model development process

This chapter will explain the peripheral steps in the process shown in the preceding flowchart; we will discuss how to select the appropriate hyperparameters and how to perform model validation using the appropriate error metrics. Improving a model's performance happens by iteratively performing these two tasks. But why is it important to evaluate your model? Say you've trained your model and provided some hyperparameters...