Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Data Analysis with Pandas
  • Table Of Contents Toc
Hands-On Data Analysis with Pandas

Hands-On Data Analysis with Pandas - Second Edition

By : Stefanie Molin
4.6 (14)
close
close
Hands-On Data Analysis with Pandas

Hands-On Data Analysis with Pandas

4.6 (14)
By: Stefanie Molin

Overview of this book

Extracting valuable business insights is no longer a ‘nice-to-have’, but an essential skill for anyone who handles data in their enterprise. Hands-On Data Analysis with Pandas is here to help beginners and those who are migrating their skills into data science get up to speed in no time. This book will show you how to analyze your data, get started with machine learning, and work effectively with the Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data. This updated edition will equip you with the skills you need to use pandas 1.x to efficiently perform various data manipulation tasks, reliably reproduce analyses, and visualize your data for effective decision making – valuable knowledge that can be applied across multiple domains.
Table of Contents (21 chapters)
close
close
1
Section 1: Getting Started with Pandas
4
Section 2: Using Pandas for Data Analysis
9
Section 3: Applications – Real-World Analyses Using Pandas
12
Section 4: Introduction to Machine Learning with Scikit-Learn
16
Section 5: Additional Resources
18
Solutions

Chapter 10: Making Better Predictions – Optimizing Models

In the previous chapter, we learned how to build and evaluate our machine learning models. However, we didn't touch upon what we can do if we want to improve their performance. Of course, we could try out a different model and see if it performs better—unless there are requirements that we use a specific method for legal reasons or in order to be able to explain how it works. We want to make sure we use the best version of the model that we can, and for that, we need to discuss how to tune our models.

This chapter will introduce techniques for the optimization of machine learning model performance using scikit-learn, as a continuation of the content in Chapter 9, Getting Started with Machine Learning in Python. Nonetheless, it should be noted that there is no panacea. It is entirely possible to try everything we can think of and still have a model with little predictive value; such is the nature of modeling...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Data Analysis with Pandas
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon