Book Image

Machine Learning Security Principles

By : John Paul Mueller
Book Image

Machine Learning Security Principles

By: John Paul Mueller

Overview of this book

Businesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning. As you progress to the second part, you’ll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references. The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary’s reputation. Once you’ve understood hacker goals and detection techniques, you’ll learn about the ramifications of deep fakes, followed by mitigation strategies. This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You’ll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks. By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively.
Table of Contents (19 chapters)
Part 1 – Securing a Machine Learning System
Part 2 – Creating a Secure System Using ML
Part 3 – Protecting against ML-Driven Attacks
Part 4 – Performing ML Tasks in an Ethical Manner

Considering traditional protections

Understanding the threats to your network is a good first step because knowing about the threat is the first step in avoiding it. However, now it’s time to do something about the threats. Anything that protects your network directly because of some type of detection practice is part of an Intrusion Detection System (IDS). It doesn’t matter whether the protection is a firewall, virus scanner, or other software that checks data in some manner, an actual security element designed to fool the attacker in some manner, or (as described later) an ML application. All of this protection reports an intrusion after detecting it, making it an IDS. Of course, you often find the term IDS cloaked in some sort of mystical way (depending on the organization/author), but really, they’re straightforward. As described in the previous section, attacks come in waves and at different levels. Consequently, you need multiple layers of security (defense...