Book Image

Machine Learning Security Principles

By : John Paul Mueller
Book Image

Machine Learning Security Principles

By: John Paul Mueller

Overview of this book

Businesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning. As you progress to the second part, you’ll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references. The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary’s reputation. Once you’ve understood hacker goals and detection techniques, you’ll learn about the ramifications of deep fakes, followed by mitigation strategies. This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You’ll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks. By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively.
Table of Contents (19 chapters)
1
Part 1 – Securing a Machine Learning System
5
Part 2 – Creating a Secure System Using ML
12
Part 3 – Protecting against ML-Driven Attacks
15
Part 4 – Performing ML Tasks in an Ethical Manner

Summary

This chapter has covered a broad range of network topics, which should tell you one thing – keeping your network secure is a team effort that requires the devoted efforts of professionals in several different areas. In order to make the topic a little easier to understand, this chapter broke the requirements down into traditional protections, ML protections, real-time detection, and predictive defenses. Hackers are constantly doing three things to thwart your efforts: finding new ways to break into your network, developing ever-faster techniques, and doing the unexpected to evade your defenses. These hacker methodologies are why you must view network security as a collaboration between humans and various kinds of automation. Without augmentation, humans are hopelessly mired in detail and won’t see an attack until it has already finished and the damage is done. Despite this, automation can’t possibly deal with a hacker’s ability to perform attacks...