Book Image

Bayesian Analysis with Python - Third Edition

By : Osvaldo Martin
Book Image

Bayesian Analysis with Python - Third Edition

By: Osvaldo Martin

Overview of this book

The third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection. In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets. By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.
Table of Contents (15 chapters)
Preface
12
Bibliography
13
Other Books You May Enjoy
14
Index

2.4 Gaussians all the way down

Gaussians are very appealing from a mathematical point of view. Working with them is relatively easy, and many operations applied to Guassians return another Gaussian. Additionally, many natural phenomena can be nicely approximated using Gaussians; essentially, almost every time that we measure the average of something, using a big enough sample size, that average will be distributed as a Gaussian. The details of when this is true, when this is not true, and when this is more or less true, are elaborated in the central limit theorem (CLT); you may want to stop reading now and search about this really central statistical concept (terrible pun intended).

Well, we were saying that many phenomena are indeed averages. Just to follow a cliché, the height (and almost any other trait of a person, for that matter) is the result of many environmental factors and many genetic factors, and hence we get a nice Gaussian distribution for the height of adult people...