Book Image

PyTorch 1.x Reinforcement Learning Cookbook

By : Yuxi (Hayden) Liu
Book Image

PyTorch 1.x Reinforcement Learning Cookbook

By: Yuxi (Hayden) Liu

Overview of this book

Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.
Table of Contents (11 chapters)

Performing on-policy Monte Carlo control

In the previous recipe, we predicted the value of a policy where the agent holds if the score gets to 18. This is a simple policy that everyone can easily come up with, although obviously not the optimal one. In this recipe, we will search for the optimal policy to play Blackjack, using on-policy Monte Carlo control.

Monte Carlo prediction is used to evaluate the value for a given policy, while Monte Carlo control (MC control) is for finding the optimal policy when such a policy is not given. There are basically categories of MC control: on-policy and off-policy. On-policy methods learn about the optimal policy by executing the policy and evaluating and improving it, while off-policy methods learn about the optimal policy using data generated by another policy. The way on-policy MC control works is quite similar to policy iteration in...