Book Image

Deep Learning for Beginners

By : Dr. Pablo Rivas
Book Image

Deep Learning for Beginners

By: Dr. Pablo Rivas

Overview of this book

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.
Table of Contents (20 chapters)
1
Section 1: Getting Up to Speed
8
Section 2: Unsupervised Deep Learning
13
Section 3: Supervised Deep Learning

References

  • Hinton, G. E., and Sejnowski, T. J. (1983, June). Optimal perceptual inference. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (Vol. 448). IEEE New York.
  • Brooks, S., Gelman, A., Jones, G., and Meng, X. L. (Eds.). (2011). Handbook of Markov Chain Monte Carlo. CRC press.
  • Tieleman, T. (2008, July). Training restricted Boltzmann machines using approximations to the likelihood gradient. In Proceedings of the 25th International Conference on Machine Learning (pp. 1064-1071).
  • Yamashita, T., Tanaka, M., Yoshida, E., Yamauchi, Y., and Fujiyoshii, H. (2014, August). To be Bernoulli or to be Gaussian, for a restricted Boltzmann machine. In 2014 22nd International Conference on Pattern Recognition (pp. 1520-1525). IEEE.
  • Tieleman, T., and Hinton, G. (2009, June). Using fast weights to improve persistent contrastive divergence. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 1033-1040).
...