Book Image

Deep Learning for Beginners

By : Dr. Pablo Rivas
Book Image

Deep Learning for Beginners

By: Dr. Pablo Rivas

Overview of this book

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.
Table of Contents (20 chapters)
1
Section 1: Getting Up to Speed
8
Section 2: Unsupervised Deep Learning
13
Section 3: Supervised Deep Learning

Training ML algorithms from data

A typical preprocessed dataset is formally defined as follows:

Where y is the desired output corresponding to the input vector x. So, the motivation of ML is to use the data to find linear and non-linear transformations over x using highly complex tensor (vector) multiplications and additions, or to simply find ways to measure similarities or distances among data points, with the ultimate purpose of predicting y given x.

A common way of thinking about this is that we want to approximate some unknown function over x:

Where w is an unknown vector that facilitates the transformation of x along with b. This formulation is very basic, linear, and is simply an illustration of what a simple learning model would look like. In this simple case, the ML algorithms revolve around finding the best w and b that yields the closest (if not perfect) approximation to y, the desired output. Very simple algorithms such as the perceptron (Rosenblatt, F. 1958) try different...