Book Image

Deep Learning for Beginners

By : Dr. Pablo Rivas
Book Image

Deep Learning for Beginners

By: Dr. Pablo Rivas

Overview of this book

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.
Table of Contents (20 chapters)
1
Section 1: Getting Up to Speed
8
Section 2: Unsupervised Deep Learning
13
Section 3: Supervised Deep Learning

Convolutional layers

Convolution has a number of properties that are very interesting in the field of deep learning:

  • It can successfully encode and decode spatial properties of the data.
  • It can be calculated relatively quickly with the latest developments.
  • It can be used to address several computer vision problems.
  • It can be combined with other types of layers for maximum performance.

Keras has wrapper functions for TensorFlow that involve the most popular dimensions, that is, one, two, and three dimensions: Conv1D, Conv2D, and Conv3D. In this chapter, we will continue to focus on two-dimensional convolutions, but be sure that if you have understood the concept, you can easily go ahead and use the others.

Conv2D

The two-dimensional convolution method has the following signature: tensorflow.keras.layers.Conv2D. The most common arguments used in a convolutional layer are the following:

  • filters refers to the number of filters to be learned in this particular layer and affects the dimension...