Book Image

Advanced Machine Learning with R

By : Cory Lesmeister, Dr. Sunil Kumar Chinnamgari
Book Image

Advanced Machine Learning with R

By: Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Overview of this book

R is one of the most popular languages when it comes to exploring the mathematical side of machine learning and easily performing computational statistics. This Learning Path shows you how to leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization. You’ll work through realistic projects such as building powerful machine learning models with ensembles to predict employee attrition. Next, you’ll explore different clustering techniques to segment customers using wholesale data and even apply TensorFlow and Keras-R for performing advanced computations. Each chapter will help you implement advanced machine learning algorithms using real-world examples. You’ll also be introduced to reinforcement learning along with its use cases and models. Finally, this Learning Path will provide you with a glimpse into how some of these black box models can be diagnosed and understood. By the end of this Learning Path, you’ll be equipped with the skills you need to deploy machine learning techniques in your own projects.
Table of Contents (30 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Chapter 5. K-Nearest Neighbors and Support Vector Machines

"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write."

–H.G. Wells

In Chapter 3, Logistic Regression, we discussed using generalized linear models to determine the probability that a predicted observation belongs to a categorical response what we refer to as a classification problem. That was just the beginning of classification methods, with many techniques that we can use to try and improve our predictions.

In this chapter, we'll delve into two nonlinear techniques: K-Nearest Neighbors (KNN) and Support Vector Machines (SVMs). These techniques are more sophisticated than those we discussed earlier because the assumptions on linearity can be relaxed, which means a linear combination of the features to define the decision boundary isn't needed. Be forewarned, though, that this doesn't always equal superior predictive ability. Additionally, these models can be a bit problematic...