Book Image

Hands-On Neuroevolution with Python

By : Iaroslav Omelianenko
Book Image

Hands-On Neuroevolution with Python

By: Iaroslav Omelianenko

Overview of this book

Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems. You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones. By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamentals of Evolutionary Computation Algorithms and Neuroevolution Methods
4
Section 2: Applying Neuroevolution Methods to Solve Classic Computer Science Problems
9
Section 3: Advanced Neuroevolution Methods
14
Section 4: Discussion and Concluding Remarks

Visual discrimination experiment

Having done all of the necessary setup steps, we are ready to start the experiment.

In the visual discrimination experiment, we use the following configuration of the visual field:

Parameter

Value

Size of the visual field

11 x 11

Positions of the small objects in the visual field along each axis

[1, 3, 5, 7, 9]

Size of the small object

1 x 1

Size of the big object

3 x 3

Offset of the center of the big object from the small object

5

Next, we need to select the appropriate values of the HyperNEAT hyperparameters, allowing us to find a successful solution to the visual discrimination problem.

Note that the hyperparameter that we describe next determines how to evolve the connective CPPN using the neuroevolution process. The discriminator ANN is created by applying the connective CPPN to the substrate.
...