Book Image

Hands-On Neuroevolution with Python

By : Iaroslav Omelianenko
Book Image

Hands-On Neuroevolution with Python

By: Iaroslav Omelianenko

Overview of this book

Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems. You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones. By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamentals of Evolutionary Computation Algorithms and Neuroevolution Methods
4
Section 2: Applying Neuroevolution Methods to Solve Classic Computer Science Problems
9
Section 3: Advanced Neuroevolution Methods
14
Section 4: Discussion and Concluding Remarks

Summary

In this chapter, we introduced a classic computer science problem related to the creation of the optimal XOR solver. We discussed the basics of the XOR problem and demonstrated its importance as the first experiment with neuroevolution—it allows you to check whether the NEAT algorithm can evolve a more complex ANN topology, starting with the most straightforward ANN configuration. Then, we defined the objective function for the optimal XOR solver and a detailed description of the NEAT hyperparameters. After that, we used the NEAT-Python library to write the source code of the XOR solver using a defined objective function, and then we experimented.

The results of the experiment we carried out allowed us to conclude the relationship between the number of species in the population, the minimum size of each species, and the performance of the algorithm, as well as the...