Book Image

Hands-On Neuroevolution with Python

By : Iaroslav Omelianenko
Book Image

Hands-On Neuroevolution with Python

By: Iaroslav Omelianenko

Overview of this book

Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems. You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones. By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamentals of Evolutionary Computation Algorithms and Neuroevolution Methods
4
Section 2: Applying Neuroevolution Methods to Solve Classic Computer Science Problems
9
Section 3: Advanced Neuroevolution Methods
14
Section 4: Discussion and Concluding Remarks

Visual inspector for neuroevolution

During the neuroevolution process, we are evolving a population of individuals. Each of the individuals is evaluated against the test environment (such as an Atari game) and reward scores are collected per individual for each generation of evolution. To explore the general dynamics of the neuroevolution process, we need to have a tool that can visualize the cloud of results for each individual in each generation of evolution. Also, it is interesting to see the changes in the fitness score of the elite individual to understand the progress of the evolution process.

To address these requirements, the researchers from Uber AI developed the VINE tool, which we'll discuss next.

Setting up the work environment

...