Book Image

Hands-On Neuroevolution with Python

By : Iaroslav Omelianenko
Book Image

Hands-On Neuroevolution with Python

By: Iaroslav Omelianenko

Overview of this book

Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems. You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones. By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments.
Table of Contents (18 chapters)
Free Chapter
1
Section 1: Fundamentals of Evolutionary Computation Algorithms and Neuroevolution Methods
4
Section 2: Applying Neuroevolution Methods to Solve Classic Computer Science Problems
9
Section 3: Advanced Neuroevolution Methods
14
Section 4: Discussion and Concluding Remarks

Overview of Neuroevolution Methods

The concept of artificial neural networks (ANN) was inspired by the structure of the human brain. There was a strong belief that, if we were able to imitate this intricate structure in a very similar way, we would be able to create artificial intelligence. We are still on the road to achieving this. Although we can implement Narrow AI agents, we are still far from creating a Generic AI agent.

This chapter introduces you to the concept of ANNs and the two methods that we can use to train them (the gradient descent with error backpropagation and neuroevolution) so that they learn how to approximate the objective function. However, we will mainly focus on discussing the neuroevolution-based family of algorithms. You will learn about the implementation of the evolutionary process that's inspired by natural evolution and become familiar with...