Book Image

Unity Virtual Reality Projects

By : Jonathan Linowes
Book Image

Unity Virtual Reality Projects

By: Jonathan Linowes

Overview of this book

What is consumer “virtual reality�? Wearing a head-mounted display you view stereoscopic 3D scenes. You can look around by moving your head, and walk around using hand controls or motion sensors. You are engaged in a fully immersive experience. On the other hand, Unity is a powerful game development engine that provides a rich set of features such as visual lighting, materials, physics, audio, special effects, and animation for creating 2D and 3D games. Unity 5 has become the leading platform for building virtual reality games, applications and experiences for this new generation of consumer VR devices. Using a practical and project-based approach, this book will educate you about the specifics of virtual reality development in Unity. You will learn how to use Unity to develop VR applications which can be experienced with devices such as the Oculus Rift or Google Cardboard. We will then learn how to engage with virtual worlds from a third person and first person character point of view. Furthermore, you will explore the technical considerations especially important and possibly unique to VR. The projects in the book will demonstrate how to build a variety of VR experiences. You will be diving into the Unity 3D game engine via the interactive Unity Editor as well as C-Sharp programming. By the end of the book, you will be equipped to develop rich, interactive virtual reality experiences using Unity. So, let's get to it!
Table of Contents (18 chapters)
Unity Virtual Reality Projects
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
11
What's Next?
Index

The difference between virtual reality and augmented reality


It's probably worthwhile clarifying what virtual reality is not.

A sister technology to VR is augmented reality (AR), which superimposes computer generated imagery (CGI) over views of the real world. Limited uses of AR can be found on smart phones, tablets, handheld gaming systems such as the Nintendo 3DS, and even in some science museum exhibits, which overlay the CGI on top of live video from a camera.

The latest innovations in AR are the AR headsets, such as Microsoft HoloLens and Magic Leap, which show the computer graphics directly in your field of view; the graphics are not mixed into a video image. If the VR headsets are like closed goggles, the AR headsets are like translucent sunglasses that employ a technology called light fields to combine the real-world light rays with CGI. A challenge for AR is ensuring that the CGI is consistently aligned with and mapped onto the objects in the real-world space and eliminate latency while moving about so that they (the CGI and objects in real-world space) stay aligned.

AR holds as much promise as VR for future applications, but it's different. Though AR intends to engage the user within their current surroundings, virtual reality is fully immersive. In AR, you may open your hand and see a log cabin resting in your palm, but in VR, you're transported directly inside the log cabin and you can walk around inside it.

We can also expect to see hybrid devices that somehow either combine VR and AR, or let you switch between modes.