Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Reinforcement Learning for Games
  • Table Of Contents Toc
Hands-On Reinforcement Learning for Games

Hands-On Reinforcement Learning for Games

By : Micheal Lanham
5 (3)
close
close
Hands-On Reinforcement Learning for Games

Hands-On Reinforcement Learning for Games

5 (3)
By: Micheal Lanham

Overview of this book

With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.
Table of Contents (19 chapters)
close
close
1
Section 1: Exploring the Environment
7
Section 2: Exploiting the Knowledge
15
Section 3: Reward Yourself

Going Deeper with DDQN

Deep learning is the evolution of raw computational learning and it is quickly evolving and starting to dominate all areas of data science, machine learning (ML), and artificial intelligence (AI) in general. In turn, these enhancements have brought about incredible innovation in deep reinforcement learning (DRL) that have allowed it to play games, previously thought to be impossible. DRL is now able to tackle game environments such as the classic Atari 2600 series and play them better than a human. In this chapter, we'll look at what new features in DL allow DRL to play visual state games, such as Atari games. First, we'll look at how a game screen can be used as a visual state. Then, we'll understand how DL can consume a visual state with a new component called convolutional neural networks (CNNs). After, we'll use that knowledge to...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Reinforcement Learning for Games
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon