Book Image

Hands-On Reinforcement Learning for Games

By : Micheal Lanham
Book Image

Hands-On Reinforcement Learning for Games

By: Micheal Lanham

Overview of this book

With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.
Table of Contents (19 chapters)
1
Section 1: Exploring the Environment
7
Section 2: Exploiting the Knowledge
15
Section 3: Reward Yourself

Summary

In this chapter, we discussed how temporal difference learning, the third thread of RL, combined to develop TD(0) and Q-learning. We did that by first exploring the temporal credit assignment problem and how it differed from the credit assignment problem. From that, we learned how TD learning works and how TD(0) or first step TD can be reduced to Q-learning.

After that, we again played on the FrozenLake environment to understand how the new algorithm compared to our past efforts. Using model-free off-policy Q-learning allowed us to tackle the more difficult Taxi environment problem. This is where we learned how to tune hyperparameters and finally looked at the difference between off- and on-policy learning. In the next chapter, we continue where we left off with on- versus off-policy as we explore SARSA.