Book Image

Mastering Embedded Linux Programming - Second Edition

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming - Second Edition

By: Chris Simmonds

Overview of this book

Embedded Linux runs many of the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all of them have Linux at their heart. Linux is a core technology in the implementation of the inter-connected world of the Internet of Things. The comprehensive guide shows you the technologies and techniques required to build Linux into embedded systems. You will begin by learning about the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You’ll see how to create each of these elements from scratch, and how to automate the process using Buildroot and the Yocto Project. Moving on, you’ll find out how to implement an effective storage strategy for flash memory chips, and how to install updates to the device remotely once it is deployed. You’ll also get to know the key aspects of writing code for embedded Linux, such as how to access hardware from applications, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters show you how to debug your code, both in applications and in the Linux kernel, and how to profile the system so that you can look out for performance bottlenecks. By the end of the book, you will have a complete overview of the steps required to create a successful embedded Linux system.
Table of Contents (17 chapters)

Summary

Knowing how to use GDB for interactive debugging is a useful tool in the embedded developer's tool-chest. It is a stable, well-documented, and well-known entity. It has the ability to debug remotely by placing an agent on the target, be it gdbserver for applications or kgdb for kernel code, and although the default command-line user interface takes a while to get used to, there are many alternative frontends. The three I mentioned were TUI, DDD, and Eclipse CDT, which should cover most situations, but there are other frontends around that you can try.

A second and equally important way to approach debugging is to collect crash reports and analyze them offline. In this category, we looked at application core dumps and kernel Oops messages.

However, this is only one way of identifying flaws in programs. In the next chapter, I will talk about profiling and tracing as...