Book Image

Mastering Object-Oriented Python - Second Edition

By : Steven F. Lott
Book Image

Mastering Object-Oriented Python - Second Edition

By: Steven F. Lott

Overview of this book

Object-oriented programming (OOP) is a relatively complex discipline to master, and it can be difficult to see how general principles apply to each language's unique features. With the help of the latest edition of Mastering Objected-Oriented Python, you'll be shown how to effectively implement OOP in Python, and even explore Python 3.x. Complete with practical examples, the book guides you through the advanced concepts of OOP in Python, and demonstrates how you can apply them to solve complex problems in OOP. You will learn how to create high-quality Python programs by exploring design alternatives and determining which design offers the best performance. Next, you'll work through special methods for handling simple object conversions and also learn about hashing and comparison of objects. As you cover later chapters, you'll discover how essential it is to locate the best algorithms and optimal data structures for developing robust solutions to programming problems with minimal computer processing. Finally, the book will assist you in leveraging various Python features by implementing object-oriented designs in your programs. By the end of this book, you will have learned a number of alternate approaches with different attributes to confidently solve programming problems in Python.
Table of Contents (25 chapters)
Free Chapter
1
Section 1: Tighter Integration Via Special Methods
11
Section 2: Object Serialization and Persistence
17
Section 3: Object-Oriented Testing and Debugging

Attribute Design Patterns

Programmers coming from other languages (particularly Java and C++) can try to make all attributes private and write extensive getter and setter functions. This kind of design pattern can be necessary for languages where type definitions are statically compiled into the runtime. It is not necessary in Python. Python depends on a different set of common patterns.

In Python, it's common to treat all attributes as public. This means the following:

  • All attributes should be well documented.
  • Attributes should properly reflect the state of the object; they shouldn't be temporary or transient values.
  • In the rare case of an attribute that has a potentially confusing (or brittle) value, a single leading underscore character (_) marks the name as not part of the defined interface. It's not technically private, but it can't be relied on in the...