Book Image

Learning RxJava - Second Edition

By : Nick Samoylov, Thomas Nield
Book Image

Learning RxJava - Second Edition

By: Nick Samoylov, Thomas Nield

Overview of this book

RxJava is not just a popular library for building asynchronous and event-based applications; it also enables you to create a cleaner and more readable code base. In this book, you’ll cover the core fundamentals of reactive programming and learn how to design and implement reactive libraries and applications. Learning RxJava will help you understand how reactive programming works and guide you in writing your first example in reactive code. You’ll get to grips with the workings of Observable and Subscriber, and see how they are used in different contexts using real-world use cases. The book will also take you through multicasting and caching to help prevent redundant work with multiple Observers. You’ll then learn how to create your own RxJava operators by reusing reactive logic. As you advance, you’ll explore effective tools and libraries to test and debug RxJava code. Finally, you’ll delve into RxAndroid extensions and use Kotlin features to streamline your Android apps. By the end of this book, you'll become proficient in writing reactive code in Java and Kotlin to build concurrent applications, including Android applications.
Table of Contents (22 chapters)
1
Section 1: Foundations of Reactive Programming in Java
5
Section 2: Reactive Operators
12
Section 3: Integration of RxJava applications
Appendix B: Functional Types
Appendix E: Understanding Schedulers

Single, Completable, and Maybe

There are a few specialized flavors of Observable that are explicitly set up for one or no emissions: Single, Maybe, and Completable. They all follow Observable closely and should be intuitive to use in your reactive coding workflow.

You can create them in similar ways as the Observable (for example, they each have their own create() factory), but certain Observable operators may return them too.

Single

The Single<T> class is essentially an Observable<T> that emits only one item and, as such, is limited only to operators that make sense for a single emission. Similar to the Observable class (which implements ObservableSource), the Single class implements the SingleSource functional...