Book Image

Learning RxJava - Second Edition

By : Nick Samoylov, Thomas Nield
Book Image

Learning RxJava - Second Edition

By: Nick Samoylov, Thomas Nield

Overview of this book

RxJava is not just a popular library for building asynchronous and event-based applications; it also enables you to create a cleaner and more readable code base. In this book, you’ll cover the core fundamentals of reactive programming and learn how to design and implement reactive libraries and applications. Learning RxJava will help you understand how reactive programming works and guide you in writing your first example in reactive code. You’ll get to grips with the workings of Observable and Subscriber, and see how they are used in different contexts using real-world use cases. The book will also take you through multicasting and caching to help prevent redundant work with multiple Observers. You’ll then learn how to create your own RxJava operators by reusing reactive logic. As you advance, you’ll explore effective tools and libraries to test and debug RxJava code. Finally, you’ll delve into RxAndroid extensions and use Kotlin features to streamline your Android apps. By the end of this book, you'll become proficient in writing reactive code in Java and Kotlin to build concurrent applications, including Android applications.
Table of Contents (22 chapters)
1
Section 1: Foundations of Reactive Programming in Java
5
Section 2: Reactive Operators
12
Section 3: Integration of RxJava applications
Appendix B: Functional Types
Appendix E: Understanding Schedulers

Throttling

The buffer() and window() operators batch up emissions into collections or observables based on a defined scope, which regularly consolidates rather than omits emissions. The throttle() operator, however, omits emissions when they occur rapidly. This is helpful when rapid emissions are assumed to be redundant or unwanted, such as a user clicking a button repeatedly. For these situations, you can use the throttleLast(), throttleFirst(), and throttleWithTimeout() operators to only let the first or last element in a rapid sequence of emissions through. How you choose one of the many rapid emissions is determined by your choice of the operator and its parameters.

For the examples in this section, we are going to work with the following case: there are three Observable.interval() sources, the first emitting every 100 milliseconds, the second every 300 milliseconds, and the...