Book Image

Advanced Python Programming - Second Edition

By : Quan Nguyen
Book Image

Advanced Python Programming - Second Edition

By: Quan Nguyen

Overview of this book

Python's powerful capabilities for implementing robust and efficient programs make it one of the most sought-after programming languages. In this book, you'll explore the tools that allow you to improve performance and take your Python programs to the next level. This book starts by examining the built-in as well as external libraries that streamline tasks in the development cycle, such as benchmarking, profiling, and optimizing. You'll then get to grips with using specialized tools such as dedicated libraries and compilers to increase your performance at number-crunching tasks, including training machine learning models. The book covers concurrency, a major solution to making programs more efficient and scalable, and various concurrent programming techniques such as multithreading, multiprocessing, and asynchronous programming. You'll also understand the common problems that cause undesirable behavior in concurrent programs. Finally, you'll work with a wide range of design patterns, including creational, structural, and behavioral patterns that enable you to tackle complex design and architecture challenges, making your programs more robust and maintainable. By the end of the book, you'll be exposed to a wide range of advanced functionalities in Python and be equipped with the practical knowledge needed to apply them to your use cases.
Table of Contents (32 chapters)
1
Section 1: Python-Native and Specialized Optimization
8
Section 2: Concurrency and Parallelism
18
Section 3: Design Patterns in Python

Use cases

By using the Chain of Responsibility pattern, we provide a chance to a number of different objects to satisfy a specific request. This is useful when we don't know which object should satisfy a request in advance. An example is a purchase system. In purchase systems, there are many approval authorities. One approval authority might be able to approve orders up to a certain value—let's say $100. If the order is for more than $100, the order is sent to the next approval authority in the chain that can approve orders up to $200, and so forth.

Another case where the Chain of Responsibility is useful is when we know that more than one object might need to process a single request. This is what happens in event-based programming. A single event, such as a left-mouse click, can be caught by more than one listener.

It is important to note that the Chain of Responsibility pattern is not very useful if all the requests can be taken care of by a single processing...