Book Image

Advanced Python Programming - Second Edition

By : Quan Nguyen
Book Image

Advanced Python Programming - Second Edition

By: Quan Nguyen

Overview of this book

Python's powerful capabilities for implementing robust and efficient programs make it one of the most sought-after programming languages. In this book, you'll explore the tools that allow you to improve performance and take your Python programs to the next level. This book starts by examining the built-in as well as external libraries that streamline tasks in the development cycle, such as benchmarking, profiling, and optimizing. You'll then get to grips with using specialized tools such as dedicated libraries and compilers to increase your performance at number-crunching tasks, including training machine learning models. The book covers concurrency, a major solution to making programs more efficient and scalable, and various concurrent programming techniques such as multithreading, multiprocessing, and asynchronous programming. You'll also understand the common problems that cause undesirable behavior in concurrent programs. Finally, you'll work with a wide range of design patterns, including creational, structural, and behavioral patterns that enable you to tackle complex design and architecture challenges, making your programs more robust and maintainable. By the end of the book, you'll be exposed to a wide range of advanced functionalities in Python and be equipped with the practical knowledge needed to apply them to your use cases.
Table of Contents (32 chapters)
1
Section 1: Python-Native and Specialized Optimization
8
Section 2: Concurrency and Parallelism
18
Section 3: Design Patterns in Python

Using the right algorithms and data structures

Algorithmic improvements are especially effective in increasing performance because they typically allow the application to scale better with increasingly large inputs.

Algorithm running times can be classified according to their computational complexity, a characterization of the resources required to perform a task.

Such classification is expressed through the Big O notation, an upper bound on the operations required to execute the task, which usually depends on the input size. Specifically, Big O notation describes how the runtime or memory requirement of an algorithm grows in terms of the input size. For this reason, a lower Big O denotes a more efficient algorithm, which is what we aim for.

For example, incrementing each element of a list can be implemented using a for loop, as follows:

    input = list(range(10))
    for i, _ in enumerate(input):
     ...