Book Image

Advanced Python Programming - Second Edition

By : Quan Nguyen
Book Image

Advanced Python Programming - Second Edition

By: Quan Nguyen

Overview of this book

Python's powerful capabilities for implementing robust and efficient programs make it one of the most sought-after programming languages. In this book, you'll explore the tools that allow you to improve performance and take your Python programs to the next level. This book starts by examining the built-in as well as external libraries that streamline tasks in the development cycle, such as benchmarking, profiling, and optimizing. You'll then get to grips with using specialized tools such as dedicated libraries and compilers to increase your performance at number-crunching tasks, including training machine learning models. The book covers concurrency, a major solution to making programs more efficient and scalable, and various concurrent programming techniques such as multithreading, multiprocessing, and asynchronous programming. You'll also understand the common problems that cause undesirable behavior in concurrent programs. Finally, you'll work with a wide range of design patterns, including creational, structural, and behavioral patterns that enable you to tackle complex design and architecture challenges, making your programs more robust and maintainable. By the end of the book, you'll be exposed to a wide range of advanced functionalities in Python and be equipped with the practical knowledge needed to apply them to your use cases.
Table of Contents (32 chapters)
1
Section 1: Python-Native and Specialized Optimization
8
Section 2: Concurrency and Parallelism
18
Section 3: Design Patterns in Python

Chapter 14

  1. Critical sections indicate shared resources that are accessed by multiple processes or threads in a concurrent application, which can lead to unexpected, and even erroneous, behaviors.
  2. A race condition occurs when two or more threads/processes access and alter a shared resource simultaneously, resulting in mishandled and corrupted data.
  3. The root cause of a race condition is multiple threads/processes reading in and altering a shared resource simultaneously. When all of the threads/processes finish their execution, only the result of the last thread/process is registered.
  4. Since race conditions arise when multiple threads or processes access and write to a shared resource simultaneously, the solution is to isolate the execution of different threads/processes, especially when interacting with the shared resource. With locks, we can turn a shared resource in a concurrent program into a critical section, whose data integrity is guaranteed to be protected.
  5. ...