Book Image

Advanced Python Programming - Second Edition

By : Quan Nguyen
Book Image

Advanced Python Programming - Second Edition

By: Quan Nguyen

Overview of this book

Python's powerful capabilities for implementing robust and efficient programs make it one of the most sought-after programming languages. In this book, you'll explore the tools that allow you to improve performance and take your Python programs to the next level. This book starts by examining the built-in as well as external libraries that streamline tasks in the development cycle, such as benchmarking, profiling, and optimizing. You'll then get to grips with using specialized tools such as dedicated libraries and compilers to increase your performance at number-crunching tasks, including training machine learning models. The book covers concurrency, a major solution to making programs more efficient and scalable, and various concurrent programming techniques such as multithreading, multiprocessing, and asynchronous programming. You'll also understand the common problems that cause undesirable behavior in concurrent programs. Finally, you'll work with a wide range of design patterns, including creational, structural, and behavioral patterns that enable you to tackle complex design and architecture challenges, making your programs more robust and maintainable. By the end of the book, you'll be exposed to a wide range of advanced functionalities in Python and be equipped with the practical knowledge needed to apply them to your use cases.
Table of Contents (32 chapters)
1
Section 1: Python-Native and Specialized Optimization
8
Section 2: Concurrency and Parallelism
18
Section 3: Design Patterns in Python

Getting started with NumPy

The NumPy library revolves around its multidimensional array object, numpy.ndarray. NumPy arrays are collections of elements of the same data type; this fundamental restriction allows NumPy to pack the data in a way that allows for high-performance mathematical operations.

Creating arrays

Let's explore NumPy's functionalities by following these steps:

  1. You can create NumPy arrays using the numpy.array function. It takes a list-like object (or another array) as input and, optionally, a string expressing its data type. You can interactively test array creation using an IPython shell, as follows:
        import numpy as np 
        a = np.array([0, 1, 2]) 
  2. Every NumPy array has an associated data type that can be accessed using the dtype attribute. If we inspect the a array, we will find that its dtype is int64, which stands for 64-bit integer:
        a.dtype 
        ...