Book Image

Advanced Python Programming - Second Edition

By : Quan Nguyen
Book Image

Advanced Python Programming - Second Edition

By: Quan Nguyen

Overview of this book

Python's powerful capabilities for implementing robust and efficient programs make it one of the most sought-after programming languages. In this book, you'll explore the tools that allow you to improve performance and take your Python programs to the next level. This book starts by examining the built-in as well as external libraries that streamline tasks in the development cycle, such as benchmarking, profiling, and optimizing. You'll then get to grips with using specialized tools such as dedicated libraries and compilers to increase your performance at number-crunching tasks, including training machine learning models. The book covers concurrency, a major solution to making programs more efficient and scalable, and various concurrent programming techniques such as multithreading, multiprocessing, and asynchronous programming. You'll also understand the common problems that cause undesirable behavior in concurrent programs. Finally, you'll work with a wide range of design patterns, including creational, structural, and behavioral patterns that enable you to tackle complex design and architecture challenges, making your programs more robust and maintainable. By the end of the book, you'll be exposed to a wide range of advanced functionalities in Python and be equipped with the practical knowledge needed to apply them to your use cases.
Table of Contents (32 chapters)
1
Section 1: Python-Native and Specialized Optimization
8
Section 2: Concurrency and Parallelism
18
Section 3: Design Patterns in Python

Chapter 3: Fast Array Operations with NumPy, Pandas, and Xarray

NumPy is the de facto standard for scientific computing in Python. It offers flexible multidimensional arrays that allow you to perform fast and concise mathematical calculations.

NumPy provides common data structures and algorithms designed to express complex mathematical operations using a concise syntax. The multidimensional array, numpy.ndarray, is internally based on C arrays. Apart from the performance benefits, this choice allows NumPy code to easily interface with the existing C and FORTRAN routines; NumPy helps bridge the gap between Python and the legacy code written using those languages.

In this chapter, we will learn how to create and manipulate NumPy arrays. We will also explore the NumPy broadcasting feature, which is used to rewrite complex mathematical expressions efficiently and succinctly.

pandas is a tool that relies heavily on NumPy and provides additional data structures and algorithms targeted...