Book Image

C# Data Structures and Algorithms - Second Edition

By : Marcin Jamro
Book Image

C# Data Structures and Algorithms - Second Edition

By: Marcin Jamro

Overview of this book

Building your own applications is exciting but challenging, especially when tackling complex problems tied to advanced data structures and algorithms. This endeavor demands profound knowledge of the programming language as well as data structures and algorithms – precisely what this book offers to C# developers. Starting with an introduction to algorithms, this book gradually immerses you in the world of arrays, lists, stacks, queues, dictionaries, and sets. Real-world examples, enriched with code snippets and illustrations, provide a practical understanding of these concepts. You’ll also learn how to sort arrays using various algorithms, setting a solid foundation for your programming expertise. As you progress through the book, you’ll venture into more complex data structures – trees and graphs – and discover algorithms for tasks such as determining the shortest path in a graph before advancing to see various algorithms in action, such as solving Sudoku. By the end of the book, you’ll have learned how to use the C# language to build algorithmic components that are not only easy to understand and debug but also seamlessly applicable in various applications, spanning web and mobile platforms.
Table of Contents (13 chapters)

Stacks

Chapter 5, Stacks and Queues, focused on stacks and queues. Now, let’s recap a stack, which is representative of limited access data structures. This name means that you cannot access every element from the structure. So, the way of getting elements is strictly specified. In the case of a stack, you can only add a new element at the top (the push operation) and get an element by removing it from the top (the pop operation). For this reason, a stack is consistent with the LIFO principle, which means Last-In First-Out. The built-in implementation as the Stack class is available, as well.

The illustration of a stack is shown as follows:

Figure 10.4 – Illustration of a stack

Figure 10.4 – Illustration of a stack

A stack has many real-world applications. One of the mentioned examples is related to a pile of many plates, each placed on top of the other. You can only add a new plate at the top of the pile, and you can only get a plate from the top of the pile. You cannot remove...