Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

7. SSD objects in Keras

Listing 11.7.1, displayed shortly, shows the SSD class. Two main routines are illustrated:

  1. Creation of the SSD model using build_model()
  1. Instantiating a data generator through build_generator()

build_model first creates a data dictionary from the train labels. The dictionary stores image filenames and ground truth bounding box coordinates and class for every object in each image. Afterward, the backbone and SSD network models are constructed. The most important product of model creation is self.ssd – the network model of SSD.

The labels are stored in a csv file. For the sample training images that is used in this book, the labels are saved in dataset/drinks/labels_train.csv with the format:

frame,xmin,xmax,ymin,ymax,class_id
0001000.jpg,310,445,104,443,1
0000999.jpg,194,354,96,478,1
0000998.jpg,105,383,134,244,1
0000997.jpg,157,493,89,194,1
0000996.jpg,51,435,207,347,1
0000995.jpg,183,536,156,283,1
0000994...